*disclaimer
793841
重回帰分析
サンプルデータとスクリプト
- サンプルデータ:NICER 1.0より学習者のエッセイデータ287個
- Criterionによるスコア、延べ語数、異なり語数、文数、TTR、ギローインデックス、平均単語長、平均文長、MATTR を各エッセイの特徴量として抽出
- ファイル名とともに結果をテキストファイルに保存するスクリプト
myIndices4.R(342)
- NICER1.0を解凍したフォルダーの中のNICER_NNSに作業ディレクトリーを移動
- スクリプトを実行
- 結果を保存するファイルを作業ディレクトリーの外にファイル名をつけて「保存(作成)」例:jpn4.txt
- Rの中に読み込む
> jpn4 <- read.table(choose.files()) > class(jpn4) [1] "data.frame" > head(jpn4) V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 1 JPN501.txt 4 319 135 30 0.4231975 7.558549 0.5921317 4.304075 10.63333 2 JPN502.txt 4 356 161 29 0.4522472 8.532983 0.6649157 4.233146 12.27586 3 JPN503.txt 3 201 121 13 0.6019900 8.534682 0.7170149 4.746269 15.46154 4 JPN504.txt 4 260 140 27 0.5384615 8.682431 0.6877692 4.761538 9.62963 5 JPN505.txt 4 420 175 25 0.4166667 8.539126 0.6341905 3.995238 16.80000 6 JPN506.txt 3 261 124 20 0.4750958 7.675407 0.6390038 4.072797 13.05000
前処理
見出しをつける
> names(jpn4) <- c("file", "Score", "Token", "Type", "NoS", "TTR", "GI", "MATTR", "AWL", "ASL") > head(jpn4) file Score Token Type NoS TTR GI MATTR AWL ASL 1 JPN501.txt 4 319 135 30 0.4231975 7.558549 0.5921317 4.304075 10.63333 2 JPN502.txt 4 356 161 29 0.4522472 8.532983 0.6649157 4.233146 12.27586 3 JPN503.txt 3 201 121 13 0.6019900 8.534682 0.7170149 4.746269 15.46154 4 JPN504.txt 4 260 140 27 0.5384615 8.682431 0.6877692 4.761538 9.62963 5 JPN505.txt 4 420 175 25 0.4166667 8.539126 0.6341905 3.995238 16.80000 6 JPN506.txt 3 261 124 20 0.4750958 7.675407 0.6390038 4.072797 13.05000
データ数の確認
> nrow(jpn4) [1] 287 > str(jpn4) 'data.frame': 287 obs. of 10 variables: $ file : Factor w/ 287 levels "JPN501.txt","JPN502.txt",..: 1 2 3 4 5 6 7 8 9 10 ... $ Score: int 4 4 3 4 4 3 4 3 4 3 ... $ Token: int 319 356 201 260 420 261 362 198 263 183 ... $ Type : int 135 161 121 140 175 124 151 98 104 99 ... $ NoS : int 30 29 13 27 25 20 26 20 19 14 ... $ TTR : num 0.423 0.452 0.602 0.538 0.417 ... $ GI : num 7.56 8.53 8.53 8.68 8.54 ... $ MATTR: num 0.592 0.665 0.717 0.688 0.634 ... $ AWL : num 4.3 4.23 4.75 4.76 4 ... $ ASL : num 10.63 12.28 15.46 9.63 16.8 ...
欠損値の処理
- 欠損値を調べる 欠損値があると計算できないことがあるので
> anyNA(jpn4) [1] TRUE > is.na(jpn4)
- 欠損値がいくつかるか調べる
> sum(is.na(jpn4)) [1] 2
- 欠損値を除いたデータにする
> jpn4.b <- na.omit(jpn4) [1] 285
分析対象のオブジェクトをattach()で「固定」しておくと便利
- jpn4.bについて、各カラムを単位に操作する
> attach(jpn4.b)
- こうしておけば、いちいち jpn4.b$Score としなくても Score だけでよい。
- 終わったら、detach()するのを忘れずに
重回帰分析 lm()
lm(従属変数 ~ 独立変数1 + 独立変数2 + 独立変数3 + ... )
> lm(Score ~ Token + Type + NoS + TTR + GI + MATTR + AWL + ASL)
> lm(Score ~ Token + Type + NoS + TTR + GI + MATTR + AWL + ASL, data=jpn4.b)
- データの中の一つを従属変数にして、残りはすべて独立変数として全部入れるときは、省略して書ける
lm(従属変数 ~ ., data=データ名)
Call: lm(formula = Score ~ Token + Type + NoS + TTR + GI + MATTR + AWL + ASL) Coefficients: (Intercept) Token Type NoS TTR GI MATTR AWL ASL -0.145765 0.004008 -0.021620 0.003506 -9.147468 1.004200 -1.306580 0.556470 0.021069
- 結果を詳しく見るには、一旦保存して、そのsummary()を見る。
> jukaiki <- lm(Score ~ Token + Type + NoS + TTR + GI + MATTR + AWL + ASL) > summary(jukaiki)
Call: lm(formula = Score ~ Token + Type + NoS + TTR + GI + MATTR + AWL + ASL) Residuals: Min 1Q Median 3Q Max -0.9080 -0.2508 0.0035 0.2581 0.7614 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.145765 0.642548 -0.227 0.820705 Token 0.004008 0.002144 1.870 0.062603 . Type -0.021620 0.010421 -2.075 0.038953 * NoS 0.003506 0.014089 0.249 0.803665 TTR -9.147468 1.328107 -6.888 3.83e-11 *** GI 1.004200 0.257697 3.897 0.000122 *** MATTR -1.306580 1.362782 -0.959 0.338519 AWL 0.556470 0.064559 8.620 5.32e-16 *** ASL 0.021069 0.025071 0.840 0.401424 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.334 on 276 degrees of freedom Multiple R-squared: 0.8145, Adjusted R-squared: 0.8091 F-statistic: 151.5 on 8 and 276 DF, p-value: < 2.2e-16
- Estimateが各変数の係数
- t値とその右のp値は、「それぞれの変数の係数が0(ゼロ)、つまり、その変数の影響はない」という帰無仮説が起きる確率
- 「影響がない」確率が5%とか1%未満で低ければ、そういうことは起きえない、つまり「影響がないとは言えない」という話になる。
- というわけで、有意(星がついている)であれば、その変数は影響力がある、と考えられえる
標準化
- 変数の規模・単位が違うので、影響を等しく比べられるように「標準化(正規化)」する。
https://scrapbox.io/nishio/%E6%AD%A3%E8%A6%8F%E5%8C%96%E3%81%A8%E6%A8%99%E6%BA%96%E5%8C%96
関数は scale()
ただし、データは数値でないといけないので、まず、一番左にあるファイル名のカラムを除く。
> jpn4.c <- jpn4.b[,-1]
- 様子を見てみる
> pairs(jpn4.c)
- 標準化する
> jpn4.z <- scale(jpn4.c)
- 型がmatrixになっているので、データフレームに変換
> jpn4.z <- as.data.frame(jpn4.z)
- これをもとに、改めて、重回帰分析
> attach(jpn4.z) > jukaiki.z <- lm(Score ~ Token + Type + NoS + TTR + GI + MATTR + AWL + ASL) > summary(jukaiki.z) Call: lm(formula = Score ~ Token + Type + NoS + TTR + GI + MATTR + AWL + ASL) Residuals: Min 1Q Median 3Q Max -1.18748 -0.32797 0.00458 0.33760 0.99580 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.587e-17 2.588e-02 0.000 1.000000 Token 5.179e-01 2.770e-01 1.870 0.062603 . Type -9.364e-01 4.514e-01 -2.075 0.038953 * NoS 3.299e-02 1.326e-01 0.249 0.803665 TTR -7.898e-01 1.147e-01 -6.888 3.83e-11 *** GI 1.282e+00 3.290e-01 3.897 0.000122 *** MATTR -7.775e-02 8.110e-02 -0.959 0.338519 AWL 2.423e-01 2.811e-02 8.620 5.32e-16 *** ASL 7.988e-02 9.505e-02 0.840 0.401424 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.4369 on 276 degrees of freedom Multiple R-squared: 0.8145, Adjusted R-squared: 0.8091 F-statistic: 151.5 on 8 and 276 DF, p-value: < 2.2e-16
VIF
- ところが、独立変数間でお互いに相関が高いものがある。
- 複数の相関が高いものを重ねて入れてしまうと、その影響が重複して評価されてしまう。
- VIF(Variance Inflation factor)をチェック(10以上はダメ、ほとんど同じもの)
- パッケージcarをインストールする
> library(car)
- 関数 vif()の実行
> vif(jukaiki.z) Token Type NoS TTR GI MATTR AWL ASL 114.203516 303.150320 26.150429 19.565310 161.087442 9.787097 1.175870 13.443703
10以上は外すべき。2以下が望ましい。
- しかし、一つをはずすと、それに関連したものが変動して、値も変わるので、一概に10以上はすべてダメというわけではない。何を選ぶかは、判断による。で、やってみる。
VIF = 1/(1 - 相関係数^2)
変数選択 関数 step()
> jukaiki.z.result <- step(jukaiki.z) > summary(jukaiki.z.result) Call: lm(formula = Score ~ Token + Type + TTR + GI + AWL + ASL) Residuals: Min 1Q Median 3Q Max -1.17036 -0.34503 -0.00159 0.34247 0.98419 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.508e-17 2.583e-02 0.000 1.0000 Token 4.732e-01 2.183e-01 2.167 0.0311 * Type -7.950e-01 4.082e-01 -1.948 0.0525 . TTR -8.081e-01 1.057e-01 -7.648 3.36e-13 *** GI 1.145e+00 2.709e-01 4.227 3.22e-05 *** AWL 2.389e-01 2.768e-02 8.630 4.83e-16 *** ASL 5.048e-02 2.918e-02 1.730 0.0848 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.4361 on 278 degrees of freedom Multiple R-squared: 0.8138, Adjusted R-squared: 0.8098 F-statistic: 202.6 on 6 and 278 DF, p-value: < 2.2e-16
- Token + Type + TTR + GI + AWL + ASL が変数の候補として残った。
- ただし、TypeとASLは重要度が低い
- ここで、また、VIFを見てみる。
> vif(jukaiki.z.result) Token Type TTR GI AWL ASL 71.198905 248.805646 16.675124 109.594573 1.144067 1.271753
試行錯誤
- TypeとASLを除いて、また、step()してみて、VIFを見てみる、、、という風に試行錯誤していく。
> jukaiki.z2 <- lm(Score ~ Token + TTR + GI + AWL) > vif(jukaiki.z2) Token TTR GI AWL 12.765221 10.876050 8.233309 1.081001 > jukaiki.z2.result <- step(jukaiki.z2) > summary(jukaiki.z2.result) Call: lm(formula = Score ~ TTR + GI + AWL) Residuals: Min 1Q Median 3Q Max -1.24601 -0.34767 0.02472 0.32806 1.00389 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.446e-16 2.608e-02 0.000 1 TTR -7.848e-01 2.817e-02 -27.861 <2e-16 *** GI 7.205e-01 2.752e-02 26.178 <2e-16 *** AWL 2.539e-01 2.716e-02 9.346 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.4403 on 281 degrees of freedom Multiple R-squared: 0.8082, Adjusted R-squared: 0.8061 F-statistic: 394.6 on 3 and 281 DF, p-value: < 2.2e-16
- TTRとGIとAWLが残る。
> jukaiki.z3 <- lm(Score ~ TTR + GI + AWL) > vif(jukaiki.z3) TTR GI AWL 1.162202 1.109615 1.080821
- これで、VIFも問題ない。
- R2も0.8とかなり高い。(8割のデータがこのモデルで説明できる)
結論
エッセイのスコアはTTRとGIとAWLで、8割が説明できる。
興味深い点
- TTRもGIも語彙の多様性を表す指標といわれているのに、、、
- 相関を見てみる
> cor.test(TTR, GI) Pearson's product-moment correlation data: TTR and GI t = 5.3729, df = 283, p-value = 1.62e-07 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.1949506 0.4060786 sample estimates: cor 0.3042462
- 相関は弱い。
もう一度やってみる。
- 語彙の多様性指標は、MATTRにしてみる。
- Tokenはいろいろと相関が出るので外してみる。
> head(jpn4.b) file Score Token Type NoS TTR GI MATTR AWL ASL 1 JPN501.txt 4 319 135 30 0.4231975 7.558549 0.5921317 4.304075 10.63333 2 JPN502.txt 4 356 161 29 0.4522472 8.532983 0.6649157 4.233146 12.27586 3 JPN503.txt 3 201 121 13 0.6019900 8.534682 0.7170149 4.746269 15.46154 4 JPN504.txt 4 260 140 27 0.5384615 8.682431 0.6877692 4.761538 9.62963 5 JPN505.txt 4 420 175 25 0.4166667 8.539126 0.6341905 3.995238 16.80000 6 JPN506.txt 3 261 124 20 0.4750958 7.675407 0.6390038 4.072797 13.05000 > cor(jpn4.b[3:10]) Token Type NoS TTR GI MATTR AWL ASL Token 1.0000000 0.889026009 0.75740319 -0.6440682 0.4822118 0.12764105 -0.108067282 0.4091337 Type 0.8890260 1.000000000 0.67377228 -0.2703160 0.8237958 0.51028459 0.002673065 0.3775746 NoS 0.7574032 0.673772281 1.00000000 -0.5133734 0.3599018 0.02273514 -0.209605424 -0.2531863 TTR -0.6440682 -0.270316024 -0.51337343 1.0000000 0.3042462 0.59836349 0.261516052 -0.2370583 GI 0.4822118 0.823795754 0.35990182 0.3042462 1.0000000 0.86155201 0.155691920 0.2309099 MATTR 0.1276411 0.510284594 0.02273514 0.5983635 0.8615520 1.00000000 0.286936810 0.1777219 AWL -0.1080673 0.002673065 -0.20960542 0.2615161 0.1556919 0.28693681 1.000000000 0.1645096 ASL 0.4091337 0.377574643 -0.25318632 -0.2370583 0.2309099 0.17772193 0.164509608 1.0000000 > jpn4.b.cor <- cor(jpn4.b[3:10]) > jpn4.b.vif <- 1/(1-jpn4.b.cor^2) > jpn4.b.vif Token Type NoS TTR GI MATTR AWL ASL Token Inf 4.770247 2.345544 1.708887 1.302979 1.016562 1.011817 1.201043 Type 4.770247 Inf 1.831398 1.078831 3.111770 1.352065 1.000007 1.166266 NoS 2.345544 1.831398 Inf 1.357870 1.148804 1.000517 1.045953 1.068494 TTR 1.708887 1.078831 1.357870 Inf 1.102008 1.557727 1.073411 1.059543 GI 1.302979 3.111770 1.148804 1.102008 Inf 3.880058 1.024842 1.056322 MATTR 1.016562 1.352065 1.000517 1.557727 3.880058 Inf 1.089720 1.032615 AWL 1.011817 1.000007 1.045953 1.073411 1.024842 1.089720 Inf 1.027816 ASL 1.201043 1.166266 1.068494 1.059543 1.056322 1.032615 1.027816 Inf > round(jpn4.b.vif, digits=2) Token Type NoS TTR GI MATTR AWL ASL Token Inf 4.77 2.35 1.71 1.30 1.02 1.01 1.20 Type 4.77 Inf 1.83 1.08 3.11 1.35 1.00 1.17 NoS 2.35 1.83 Inf 1.36 1.15 1.00 1.05 1.07 TTR 1.71 1.08 1.36 Inf 1.10 1.56 1.07 1.06 GI 1.30 3.11 1.15 1.10 Inf 3.88 1.02 1.06 MATTR 1.02 1.35 1.00 1.56 3.88 Inf 1.09 1.03 AWL 1.01 1.00 1.05 1.07 1.02 1.09 Inf 1.03 ASL 1.20 1.17 1.07 1.06 1.06 1.03 1.03 Inf > jukaiki.ml2 <- lm(Score ~ Type + NoS + MATTR + AWL + ASL, data=jpn4.b) > cor(jpn4.b[c(4,5,8,9,10)]) Type NoS MATTR AWL ASL Type 1.000000000 0.67377228 0.51028459 0.002673065 0.3775746 NoS 0.673772281 1.00000000 0.02273514 -0.209605424 -0.2531863 MATTR 0.510284594 0.02273514 1.00000000 0.286936810 0.1777219 AWL 0.002673065 -0.20960542 0.28693681 1.000000000 0.1645096 ASL 0.377574643 -0.25318632 0.17772193 0.164509608 1.0000000 > jpn4.b.cor2 <- cor(jpn4.b[c(4,5,8,9,10)]) > jpn4.b.vif2 <- 1/(1-jpn4.b.cor2^2) > jpn4.b.vif2 Type NoS MATTR AWL ASL Type Inf 1.831398 1.352065 1.000007 1.166266 NoS 1.831398 Inf 1.000517 1.045953 1.068494 MATTR 1.352065 1.000517 Inf 1.089720 1.032615 AWL 1.000007 1.045953 1.089720 Inf 1.027816 ASL 1.166266 1.068494 1.032615 1.027816 Inf > plot(jukaiki.ml2) 次の図を見るためには <Return> キーを押して下さい: 次の図を見るためには <Return> キーを押して下さい: 次の図を見るためには <Return> キーを押して下さい: 次の図を見るためには <Return> キーを押して下さい: > step(jukaiki.ml2) Start: AIC=-576.28 Score ~ Type + NoS + MATTR + AWL + ASL Df Sum of Sq RSS AIC <none> 36.174 -576.28 - MATTR 1 1.1418 37.316 -569.43 - NoS 1 2.6349 38.809 -558.24 - Type 1 2.6557 38.830 -558.09 - ASL 1 4.0863 40.260 -547.78 - AWL 1 7.6256 43.800 -523.77 Call: lm(formula = Score ~ Type + NoS + MATTR + AWL + ASL, data = jpn4.b) Coefficients: (Intercept) Type NoS MATTR AWL ASL -0.64428 0.01119 0.04275 -2.65094 0.53249 0.09177
データは正規分布していないといけないか
plot(jukaiki.ml2)
重回帰分析 lmres()
https://cran.r-project.org/web/packages/pequod/index.html
- ランダム効果は入れられない
install.packages("pequod") library(pequod) model.lmres <- lmres(目的 ~ 説明1+ 説明2 + 説明3 + 説明2:説明3, データ)
交互作用の分析
- 単純主効果
model.int <- simpleSlope(model.lmres, pred="説明2", mod1="説明3") PlotSlope(model.int)
データの中心化
- 中心化をしたい項目について、オプションで指定する
, centered = c("項目A", "項目B")
https://sugiura-ken.org/wiki/